

Annual Drinking Water Quality Report

Monitoring Performed January - December 2024

Central Elmore Water & Sewer Authority

716 US Highway 231 Wetumpka, Alabama 36093 Phone: (334) 567-6814 Fax: (334) 567-5556

PWS - AL0000547 Website: www.cewsa.com Email: cewsa@cewsa.com

Central Elmore Water & Sewer Authority maintains and operates a 12 million gallon per day surface water treatment plant at our primary water source on Lake Martin.

Here at CEW&SA, we serve approximately 13,238 customers of our own; along with Rockford Utilities (1,371 customers), Eclectic Water Works & Sewer Department (1,736 customers), Friendship Water Works (1,370 customers), and Wetumpka Water Works & Sewer Board (3,400 customers).

Each customer refers to a meter served, which translates into approximately 63,345 persons CEW&SA serves.

Our territory covers approximately 350 square miles out of the 657 square miles contained in Elmore County. We currently maintain over 790 miles of water mains in our territory along with 12 water storage facilities holding a total of almost 7.7 million gallons.

We want our valued customers to be informed about their water utility.

Regularly scheduled Board Meetings are held the third Tuesday of each
month at the main office located at: 716 US Highway 231.

Board of Directors

Fred Braswell, III - Chairman
Bill Newton - Vice Chairman
Conrad White - Director
Chad Shaw - General Manager
Tina Stanley - Office Manager

Monitoring Schedule

Our water sources are routinely monitored for contaminants, according to a schedule determined by Federal and State regulations. Every water system has individually assigned monitoring requirements.

ADEM allows monitoring for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. The following table shows the most recent year and the next monitoring requirement for the contaminant groups.

Contaminant Monitored	Date Monitored / Next Monitoring
Inorganic Contaminants	Annually
Lead/Copper	2022 / 2025
Microbiological Contaminants	Monthly
Nitrates	Annually
PFAS	Quarterly
Radioactive Contaminants	2022 / 2031
Synthetic Organic Contaminants (including pesticides and herbicides)	2022 / 2025
Volatile Organic Contaminants	Annually
Disinfection By-products	Quarterly

Variances and Exemptions

ADEM or the EPA can give permission not to meet an MCL or a treatment technique under certain conditions.

Based on a study conducted by ADEM with the approval of the EPA, a statewide waiver for the monitoring of asbestos and dioxin was issued.

Thus, monitoring for these contaminants was not required.

It is an honor to once again present to you this Annual Water Quality Report. This year's report is an overview of 2024's water quality. The report has been prepared to meet the requirements of the 1996 Safe Drinking Water Act (SDWA) adopted by Congress and to provide our customers with information about their water system. It has been the goal of Management to become more transparent for the customers. Informed customers are our biggest allies.

As part of the new EPA regulations on lead and copper, CEW&SA staff built a database that includes all water service material on both sides of the meter within our service territory. I am proud to say that no lead service lines were discovered during this process. We were able to submit the completed database to ADEM and EPA before the October 2024 deadline.

The EPA released new PFAS regulations in April 2024. We are proud to say that our quarterly sample results continue to be below the new EPA limits. The water provided to you by Central Elmore Water & Sewer Authority (CEW&SA) continues to meet or exceed all state and federal water quality regulations. CEW&SA has never had a violation of contamination levels in the water we supply you, our valued customers. Go to our website and Facebook page for our latest news release on the EPA's PFAS regulations.

In 2024, Management introduced a Capital Improvement Plan (CIP) to combat the leaks and water loss attributed to aging infrastructure. Funding for the 2025 projects was tied directly to proper investing. Moving forward, the Board and management have expressed the desire to fund projects in the CIP each year and will do so as funding is available, which is a testament to properly managing costs and appropriating the savings accordingly.

Also in 2024, CEW&SA's consulting engineers began developing construction plans for a Granular Activated Carbon System. After completing a two-year pilot study, this system was designed to remove the Geosmin and MIB associated with the taste and odor issues caused by the algae in Lake Martin. The overall project is designed to include the replacement of outdated plant PLCs, the Hypo Generation System, and the filter bed media. The new system is expected to become operational in 2026.

For the first time in several years, CEW&SA's employment numbers are back to normal. The Filter Plant hired two Grade 4 Operators and a Maintenance Technician along with several Field Service Technicians in Operations. CEW&SA replaced its long-time Accountant after her many years of faithful employment and retirement. CEW&SA continues to operate with the same number of employees since before 2010.

I encourage you to take the time to review this report. If you have any questions concerning this report or CEW&SA, please contact me, Chad Shaw, General Manager, at 334-567-6814, Monday - Friday, 7:30 a.m. to 4:30 p.m. and I will be glad to address any concerns you may have.

Chadwick E. Shaw, P.E. General Manager

General Information Regarding Drinking Water Contaminants

All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline at 800-426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban stormwater run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides may come from a variety of sources such as agriculture, stormwater run-off, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants, can be naturally occurring or be the result of oil and gas production and mining activities.

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immuno-compromised such as cancer patients undergoing chemotherapy, organ transplants recipients, people with HIV/AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drinking water from their healthcare providers. For people who may be immuno-compromised, a guidance document developed jointly by the Environmental Protection Agency and the Center for Disease Control (CDC) is available online online www.epa.gov/safewater or by calling the Safe Drinking Water Hotline (800-426-4791).

Water systems also test your source water for pathogens, such as Cryptosporidium and Giardia. These pathogens can enter the water from animal or human waste. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants can also be obtained by calling the hotline or online www.epa.gov/safewater.

Important Health Information about Lead

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Exposure to lead in drinking water can cause serious health effects in all age groups, especially for pregnant women and young children. Infants and children can have decreases in IQ and attention span. Lead exposure can lead to new learning and behavior problems or exacerbate existing learning and behavior problems. The children of women who are exposed to lead before or during pregnancy can have increased risk of these adverse health effects. Adults can have increased risks of heart disease, high blood pressure, kidney, or nervous system problems.

Lead in drinking water is primarily from materials and parts used in service lines and home plumbing. Central Elmore Water & Sewer Authority is responsible for providing high-quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time.

Lead levels in your drinking water are likely to be higher if:

- Your home or water system has lead pipes, or
- Your home has faucets or fittings made of brass which contains some lead, or
- · Your home has copper pipes with lead solder and you have naturally soft water, and
- · Water often sits in the pipes for several hours

You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk:

- Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly.
- Clean your aerator. Regularly clean your faucet's screen (also known as an aerator). Sediment, debris, and lead particles can collect in your aerator. If lead particles are caught in the aerator, lead can get into your water.
- Use only cold water for drinking, cooking, and making baby formula.
 - o Boiling water does not remove lead from water.
- Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes.
 - You can do this by running your tap, taking a shower, doing laundry or a load of dishes.
 - If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period.

If you are concerned about lead in your water, you may wish to have your water tested, contact Central Elmore Water & Sewer Authority at (334) 567-6814.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water hotline or at www.epa.gov/safewater/lead.

During the past year, we have taken thousands of water samples in order to determine the presence of any primary, secondary, or unregulated contaminants. The water quality information presented in the tables below is from the most recent monitoring periods for each group. These tables only include those contaminants that were detected in the water.

		Table of D	etected Prim	ary Contaminan	ts	
Primary Standards - Manda	tory standards se	t by the Safe E	rinking Water Act	used to protect public	health. Thes	e apply to all public water systems.
Contaminant & Unit of MSMT	MCL, TT, or MRDL (What's Allowed?)	MCLG (What's the Goal?)	Max Detected	Range of Detected Low - High (MD)	Violation	Major Sources
		BACTER	IOLOGICAL CONT	'AMINANTS - 2024		
Total Organic Carbon TOC (ppm)	П	NA NA	1.48	ND - 1.48 þ	No	Naturally present in the environment
Arsenic (ppb)	0.010	0	0.39	0.39	No	Erosion of natural deposits; runoff from orchards, runoff from glass and electronics production wastes
Barium (ppm)	ž	2	0.0115	0.0115	No	Discharge of drilling wastes; Discharge from mo refineries; Erosion of natural deposits
Chromium (ppb)	100	100	0.598	0.598	No	Discharge from steel and pulp mills; Erosion on natural deposits
Fluoride (ppm)	4	4	0.901	0.901	No	Water additive which promotes strong teeth; ero of natural deposits; Discharge from fertilizer a aluminum factories
Mercury (ppb)	2	ND	0.44	0.44	No	Corrosion of household plumbing systems; Eros of natural deposits
		LEAD	& COPPER (TAP	WATER) - 2022		
Copper-action level at consumer taps (ppm)	AL=1.3	1.3	0.0867	0.0082 - 0.0867	No	Corrosion of household plumbing systems; Eros of natural deposits
Lead - action level at consumer taps (ppb)	AL=15	0	1.4	ND-1.4	No	Corrosion of household plumbing systems; Eros of natural deposits
Total Haloacetic Acids HAA (ppb)	60	NA	24.9	LRAA Range 8.8 - 21.5	No	By-product of drinking water disinfection
Total Trihalomethanes TTHM (ppb)	80	NA	50.4	LRAA Range 14.8 - 35.0	No	By-product of drinking water disinfection

b The percentage of Total Operatic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set

There is convincing evidence that the addition of a disinfectant is necessary for the control of microbial contains.

				table are from 2024
	Contaminant & Unit of MSMT	MCL	Maximum Detected	Major Sources
	Chloride (ppm)	250	11.6	Naturally occurring in the environment or as a result of agricultural runoff
	Copper (ppm)	1.0	20.1	Erosion of natural deposits; Corrosion of household plumbing systems
Г	Manganese (ppm)	0.05	2.4	Erosion of natural deposits; Leaching from pipes
	pH (std units)	6.5-8.5	7.7	Naturally occurring in the environment or as a result of treatment with water additives
Г	Sulfate (ppm)	250	12.8	Naturally occurring in the environment or as a result of industrial discharge or as a result of agricultural runoff
	Total Dissolved Solids (ppm)	500	34	Naturally occurring in the environment or as a result of industrial discharge or as a result of agricultural runoff
	Zinc (ppm)	5	2.5	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills
	Alkalinity, Total (as CA, Co3) (ppm)	NA.	20	Naturally occurring in the environment
Г	Calcium, as Ca (ppm)	NA.	2.7	Erosion of natural deposits
Г	Carbon Dioxide (ppm)	NA.	17.5	Erosion of natural deposits
Г	Conductivity (umhos)	NA.	105	Naturally occurring in the environment or as a result of treatment with water additives
Г	Hardness (ppm)	NA.	11.3	Naturally occurring in the environment or as a result of treatment with water additives
	Magnesium (ppm)	NA.	1.12	Erosion of natural deposits
Г	Nickel (ppm)	NA.	0.0011	Result of discharge by power plants, metal factories and waste incinerators or as a result of agricultural runoff
	Sodium (ppm)	NA.	16.6	Naturally occurring in the environment

Filter Plant 2024 Daily Testing	Range Low - High (MD)
BACTERIOLOGICAL	CONTAMINANTS
Turbidity (NTU) E	0.01 - 0.08
INORGANIC CO	NTAMINANTS
Fluoride (ppm)	0.30 - 0.80
DISINFECTANTS & DISINI	FECTION BYPRODUCTS
Chlorine (ppm)	1.6 - 2.1
Chlorine Dioxide (ppb)	0.06 - 0.32
Chlorite (ppm)	0.29 - 0.76
SECONDARY & ADDITIO	NAL CONTAMINANTS
Alkalinity	13-30
Hardness	9-22
Iron	ND-0.09
Manganese	ND-0.08
pH	7.3 - 8.0

£ Turbitidy is a measure of the cloudiness of the water We monitor it because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectance

0.82 - 1.2

	Unregulated (Contaminants -	- 2024
Contaminant & Unit of MSMT	Average Detected	Range of Detected	Major Sources
Bromodichloromethane (ppb)	6.69	ND - 21.7	Naturally occurring in the
Bromoform (ppb)	0.82	ND - 4.6	environment or as a result of
Chioroform (ppb)	17.0	ND - 42.8	industrial discharge or agricultural
Dibromochloromethane (ppb)	0.16	ND - 1.1	runoff; by product of chlorination

1 drop in a tanker truck = 1 pp OR, in terms of time, ppm can be thought of 32 years

b	+
as one second in	Pe
	cor

Nitrite (measured as Nitrogen) NO2 (nom)

Not Applicable (NA)

in excess of 5 NTU is just noticeable to the average person.

ppb (parts per billion): micrograms per liter (µg/L) ppm (parts per million): milligrams per liter (mg/L)

ppt (parts per trillion): nanogram per liter (ng/L) pCi/L (picocuries per liter): a measure of radioactivity in water.

that still yields a just detectable odo

contaminant in drinking water.

Nephelometric Turbidity Unit (NTU): A measure of the clarity of the water. Turbidity

Threshold Odor Number (TON): The greatest dilution of a sample with odor-free water

Treatment Technique (TT): A required process intended to reduce the level of a

In order to ensure that tap water is safe to drink, the Environmental Protection Agency (EPA) prescribes regulations that limit the amount of contaminants in water provided by public water systems. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful to our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection for public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels.

				Table of F	Primary Co	ontaminants					
Contaminant & Unit of MSMT	MCL, TT, or MRDL (What's Allowed?)	Max Detected	Contaminant	MCL, TT, or MRDL (What's Allowed?)	Max Detected	Contaminant	MCL, TT, or MRDL (What's Allowed?)	Max Detected	Contaminant	MCL, TT, or MRDL (What's Allowed?)	Max Detected
BACTERIOLOGICAL	LCONTAMINANTS										
Total Coliform Bacteria	< 5% present/absent	Absent	1,1,1-Trichloroethane (ppb)	200	ND	Dalapon (ppb)	200	ND	Lindane (ppt)	200	ND
Fecal Coliform & E. coli	present/absent	Absent	1,1,2-Trichloroethane (ppb)	5	ND	Dibromochloropropane (ppt)	200	ND	Methoxychlor (ppb)	40	ND
Total Organic Carbon (TOC)	TT	1.48	1,1-Dichloroethylene (ppb)	7	ND	Di (2-ethylhexyl)adipate (ppb)	400	ND	o-Dichlorobenzene (ppb)	600	ND
Turbidity (NTU)	TT	0.08	1,2,4-Trichlorobenzene (ppb)	0.07	ND	Di (2-ethylhexyl)phthalate (ppb)	6	ND	Oxamyl [Vydate] (ppb)	200	ND
RADIOLOGICAL (CONTAMINANTS		1,2-Dichloroethane (ppb)	5	ND	Dinoseb (ppb)	7	ND	p-Dichlorobenzene (ppb)	75	ND
Beta/photon emitters (mrem/yr)	4	ND	1,2-Dichloropropane (ppb)	5	ND	Dioxin [2,3,7,8-TCDD] (ppq)	30	NA	Pentachlorophenol (ppb)	1	ND
Alpha emitters (pCi/L)	15	ND	2,4,5-TP [Silvex] (ppb)	50	ND	Diquat (ppb)	20	ND	Picloram (ppb)	500	ND
Combined radium (pCi/L)	5	ND	2,4·D (ppb)	70	ND	Endothall (ppb)	100	ND	Polychlorinated biphenyls (ppt)	0.5	ND
INORGANIC CO	NTAMINANTS		Acrylamide (ppb)	П	ND	Endrin (ppb)	2	ND	Simazine (ppb)	4	ND
Antimony (ppb)	6	ND	Alachlor (ppb)	2	ND	Epichlorohydrin (ppb)	п	ND	Styrene (ppb)	100	ND
Arsenic (ppb)	10	0.39	Atrazine (ppb)	3	ND	Ethylbenzene (ppb)	700	ND	Tetrachloroethylene (ppb)	5	ND
Asbestos (MFL)	7	NA NA	Benzene (ppb)	5	ND	Ethylene Dibromide (ppt)	50	ND	Toluene (ppm)	1	ND
Barium (ppm)	2	0.0115	Benzo(a)pyrene [PAHs] nanograms/L)	200	ND	Glyphosate (ppb)	700	ND	Toxaphene (ppb)	3	ND
Beryllium (ppb)	4	ND	Carbofuran (ppb)	40	ND	Heptachlor (ppt)	400	ND	trans-1,2-Dichloroethylene (ppb)	100	ND
Cadmium (ppb)	5	ND	Carbon Tetrachloride (ppb)	5	ND	Heptachlor Epoxide (ppt)	200	ND	Trichloroethylene (ppb)	5	ND
Chromium (ppb)	100	0.598	Chlordane (ppb)	2	ND	Hexachlorobenzene (ppb)	1	ND	Vinyl Chloride (ppb)	2	ND
Copper - action level at			Chlorobenzene (ppb)	100	ND	Hexachlorocyclopentadiene (ppb)	50	ND	Xylenes (ppm)	10	ND
consumer taps (ppm)	AL=1.3	0.0867	cis-1,2-Dichloroethylene (ppb)	70	ND						
Cyanide (ppb)	200	ND									
Fluoride (ppm)	4	0.901	Bromate (ppb)	10	ND	Chlorine Dioxide (ppb)	800	0.32	Total Haloacetic Acids HAA (ppb)	60	24.9
Lead - action level at	AL=15	1.4	Chloramines (ppm)	4	ND	Chlorite (ppm)	1	0.76	Total Trihalomethanes TTHM (ppb)	80	50.4
consumer taps (ppb)			Chlorine (ppm)	4	2.1						
Mercury (ppb)	2	0.44									
Nitrate (measured as Nitrogen) NO3 (ppm)	10	ND ND	CECONDARY C- ADD	ITIONIAL CONTA	STREET, STREET,			LIBIT	ECHI ATED CONTAMINANTO		

	Thallium (ppb)	2	ND	& Unit of MSMT	(What's Allowed?)	Detected
		-		Aluminum (ppm)	0.05 to 0.2	ND
	Abbreviation	ns & Definition	s	Chloride (ppm)	250	11.6
				Color (color units)	15	ND
	Action Level (AL): The concentration of a		ggers treatment or other	Copper (ppm)	1.0	20.1
	equirements that a water system shall fo			Corresivity	Non-corrosive	ND
	owest Running Annual Average (LRAA)			Fluoride (ppm)	2.0	ND
	amples taken at a particular monitoring warters.	location during the p	revious tour calendar	Foaming agents MBAS (ppm)	0.5	2.4
	Maximum Contaminant Level (MCL): The	highest contaminar	it level allowed in	Iron (ppm)	0.3	ND
	lrinking water. MCLs are set as close to th			Manganese (ppm)	0.05	7.7
t	reatment technology.			Odor (threshold odor number)	3	ND
	Aaximum Contaminant Level Goal (MCL	G): The level of a con	taminant in drinking	pH (std units)	6.5 - 8.5	12.8
	vater below which there is no known or e	xpected risk to healtl	1. MCLGs allow for a	Silver (pprn)	0.1	34
	nargin of safety.			Sulfate (ppm)	250	2.5
	Maximum Detected (MD)	ammer W. I. I. I.		Total Dissolved Solids (ppm)	500	155
	Maximum Residual Disinfectant Level (N Howed in drinking water, There is convin			Zinc (ppm)	5	0.0019
	lisinfectant is necessary for the control of			Alkalinity, Total (as CA, Co3) (ppm)	NA NA	20
	Aaximum Residual Disinfection Level G			Calcium, as Ca (ppm)	NA NA	2.7
c	lisinfectant below which there is no know	vn or expected risk to	health. MRDLGs do not	Carbon Dioxide (ppm)	NA NA	17.5
r	eflect the benefits of the use of disinfect	ants to control microl	oial contaminants.	Conductivity (umhos)	NA NA	105
	Aillirem per year (mrem/yr) : a measure o	of radiation absorbed	by the body.	Hardness (ppm)	NA NA	11.3

UNREGULATED CONTAMINANTS								
Contaminant	Average Detected	Contaminant	Average Detected	Contaminant	Average Detecter			
1,1 – Dichloropropene	ND	Bromobenzene	ND	Isoprpylbenzene	ND			
1,1,1,2-Tetrachloroethane	ND	Bromochloromethane	ND	M-Dichlorobenzene	ND			
1,1,2,2-Tetrachloroethane	ND	Bromodichloromethane	6.69	Methomyl	ND			
1,1-Dichloroethane	ND	Bromoform	0.82	Metolachlor	ND			
1,2,3 - Trichlorobenzene	ND	Bromomethane	ND	Metribuzin	ND			
1,2,3 - Trichloropropane	ND	Butachlor	ND	MTBE	ND			
1,2,4 - Trimethylbenzene	ND	Carbaryl	ND	N - Butylbenzene	ND			
1,3 - Dichloropropane	ND	Chloroethane	ND	Naphthalene	ND			
1,3 – Dichloropropene	ND	Chloroform	17.0	N-Propylbenzene	ND			
1,3,5 - Trimethylbenzene	ND	Chloromethane	ND	O-Chlorotoluene	ND			
z,z-Dichloropropane	ND	Dibromochloromethane	0.16	P-Chlorotoluene	ND			
3-Hydroxycarbofuran	ND	Dibromomethane	ND	P-Isopropyltoluene	ND			
Aldicarb	ND	Dicamba	ND	Propachlor	ND			
Aldicarb Sulfone	ND	Dichlorodifluoromethane	ND	Sec - Butylbenzene	ND			
Aldicarb Sulfoxide	ND	Dieldrin	ND	Tert - Butylbenzene	ND			
Aldrin	ND	Hexachlorobutadiene	ND	Trichlorfluoromethane	ND			

Lead & Copper Monitoring

Central Elmore Water & Sewer Authority completed monitoring requirements for lead and copper in 2022. Thirty-two sites were sampled without exceeding the Action Level Limits for lead or copper. The system will continue to monitor for lead and copper every three years. The next monitoring period for the system will be the period of June - September 2025.

Our monitoring results in 2022 were as follows:

				EAD & COPPER (TAP V			
Contaminant & Unit of MSMT	AL (Action Level)	MCLG (What's the Goal?)	Date Sampled (mo/yr)	90th Percentile Result	Range Low - High (MD)	No. of Sampling Sites Exceeding the AL	Major Sources
Copper (ppm)	1.3	1.3	June	0.0732 ppm	0.0082 - 0.0867	0	Corrosion of household plumbing
Lead (ppb)	15	0	2022	0.44 ppb	ND - 1.4	0	systems; Erosion of natural deposits

As required by ADEM, we conducted and prepared a Lead Service Line Inventory during 2024. Our findings were:

			ARY
	DOTAL SERVICE LIN	TES	15,011
Lead	Galvanized	Non-Lead	Lead Status Unknown
0	0	15.011	0

Corrosion of pipes, plumbing fittings and fixtures may cause metals, including lead and copper, to enter drinking water. To assess corrosion of lead and copper, CEW&SA conducts tap sampling for lead and copper at selected sites every three years.

Also, CEW&SA is required to sample for lead in schools and licensed child care facilities as requested by the facility. Please contact your school or child care facility for further information about potential sampling results.

The complete Lead sampling data, Service Line Inventory Report, and any information on replacement plans for Lead, Galvanized, or Unknown service lines are available for review in our office.

Atuminum (ppm)	0.05100.2	ND
Chloride (ppm)	250	11.6
Color (color units)	15	ND
Copper (ppm)	1.0	20.1
Corrosivity	Non-corrosive	ND
Fluoride (ppm)	2.0	ND
Foaming agents MBAS (ppm)	0.5	2.4
Iron (ppm)	0.3	ND
Manganese (ppm)	0.05	7.7
Odor (threshold odor number)	3	ND
pH (std units)	6.5 - 8.5	12.8
Silver (ppm)	0.1	34
Sulfate (ppm)	250	2.5
Total Dissolved Solids (ppm)	500	155
Zinc (ppm)	5	0.0015
Alkalinity, Total (as CA, Co3) (ppm)	NA NA	20
Caltium, as Ca (ppm)	NA NA	2.7
Carbon Dioxide (ppm)	NA NA	17.5
Conductivity (umhos)	NA NA	105
Hardness (ppm)	NA NA	11.3
Magnesium (ppm)	NA NA	1.12
Nickel (ppm)	NA NA	0.001
Sodium (ppm)	NA NA	16.6

MCL TT. or MRDL

PFAS - 2024			
PFAS Contaminants (ppb)	Max Detected	PFAS Contaminants (ppb)	Max Detected
nCI-PF3OUdS (n-chloroeicosafluoro-3oxaundecane-1-sulfonic acid)	ND	Perfluorononanoic acid - PFNA	0.000001080
9CI-PF3ONS (9-chlorohexadecafluoro-30xanone-1-sulfonic acid)	ND	Perfluorooctanesulfonic acid - PFOS	0.000002260
ADONA (4,8-dioxa-3H-perfluorononanoic acid)	ND	Perfluorooctanoic acid - PFOA	0.000002680
HFPO-DA (Hexafluoropropylene oxide dimer acid)	ND	Perfluorodecanoic acid - PFDA	ND
NEtFOSAA (N-ethyl perfluorooctanesul fonamidoacetic acid)	ND	Perfluorododecanoic acid - PFDoA	0.000000659
NMeFOSAA (N-methyl perfluorooctanesulfonamidoacetic acid)	0.000000276	Perfluorohexanoic acid - PFHxA	0.000000960
Perfluorobutanesulfonic acid - PFBS	0.000001260	Perfluorotetradecanoic acid - PFTeDA	0.000001280
Perfluoroheptanoic acid - PFHpA	0.000000749	Perfluorotridecanoic acid - PFTrDA	0.000000921
Perfluorohexanesulfonic acid - PFHxS	0.000000598	Perfluoroundecanoic acid - PFUnA	0.000000366

er- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that have properties useful in the manufacture of nonstick pokware, stain-resistant carpet and textiles, firefighting foams, food wrappers, and many more industrial and consumer applications. These chemicals, which have been produced in the United States since the early 1940s, are very persistent in the environment.